106 research outputs found

    Finite-size corrections to the rotating string and the winding state

    Full text link
    We compute higher order finite size corrections to the energies of the circular rotating string on AdS_5 x S^5, of its orbifolded generalization on AdS_5 x S^5/Z_M and of the winding state which is obtained as the limit of the orbifolded circular string solution when J -> infinity and J/M^2 is kept fixed. We solve, at the first order in lambda'=lambda/J^2, where lambda is the 't Hooft coupling, the Bethe equations that describe the anomalous dimensions of the corresponding gauge dual operators in an expansion in m/K, where m is the winding number and K is the "magnon number", and to all orders in the angular momentum J. The solution for the circular rotating string and for the winding state can be matched to the energy computed from an effective quantum Landau-Lifshitz model beyond the first order correction in 1/J. For the leading 1/J corrections to the circular rotating string in m^2 and m^4 and for the subleading 1/J^2 corrections to the m^2 term, we find agreement. For the winding state we match the energy completely up to, and including, the order 1/J^2 finite-size corrections. The solution of the Bethe equations corresponding to the spinning closed string is also provided in an expansion in m/K and to all orders in J.Comment: v2: 33 pages, misprints corrected, references added, version accepted for publication in JHE

    Acoustically efficient concrete: acoustic absorption coefficient of porous concrete with different aggregate size

    Get PDF
    Porous absorbers are the most widely used type of acoustically absorptive materials. The interest on their outdoor applications has put further attention on the use of porous concrete in the building industry. This work investigates the acoustic properties of porous concrete. The assessment of the sound absorbing performances has been conducted in the small-scale reverberation room of Politecnico di Torino (Italy), in agreement with the indication in the ISO 354:2003 Standard. For each concrete type, three panel thicknesses, i.e. 20 mm, 40 mm, 60 mm were tested. Moreover, different mounting methods were tested, considering the presence of an airgap between the panel and the backing, and considering the introduction of rockwool in the airgap itself. The result show weighted absorption coefficients (aw) in the range 0.30-0.75 depending on the thickness and mounting conditions. These encouraging values make these materials useful for practical applications in architecture and civil engineering

    Wind Energy Forecast in Complex Sites with a Hybrid Neural Network and CFD based Method

    Get PDF
    Abstract The wind is an intermittent renewable energy source and the energy production forecast is a fundamental activity for many reasons (grid regulation, maintenance, etc.). In this work a hybrid method (based on weather forecast data, neural networks and computational fluid dynamics) and a pure neural network approach are compared in a complex terrain site. The post processing of real production data has been discovered to be a key activity. Treatment and filtering of data spreading out from the supervisory control and data acquisition system are fundamental both for training and testing methods reliability

    Long Term Wind Turbine Performance Analysis Through SCADA Data: A Case Study

    Get PDF
    Performance monitoring of horizontal-axis wind turbines is a complex task because they operate under nonstationary conditions. Furthermore, in real-world applications, there can be data quality issues because the free stream wind speed is reconstructed through a nacelle transfer function from cup anemometers measurements collected behind the rotor span. Given these matters of fact, one of the objectives of the present work is applying an innovative method for correcting the nacelle wind speed measurements, which is based on the manufacturer power curve and statistical considerations. Three operating wind turbines, having 2 MW of rated power and owned by the ENGIE Italia company, are contemplated as test cases. Operation data spanning ten years (2011–2020) are studied: actually, this work aims as well at contributing to the methods for estimating the performance decline with age of wind turbines, basing on long term SCADA data analysis. The raw and corrected wind speed measurements are fed as input to a Support Vector Regression for the power curve: by selecting appropriately the training and validation data sets, it is possible to estimate the average yearly rate of performance decline. Using the corrected wind speed, the estimate obtained in this study is compatible with the most recent findings in the literature, which indicate a -0.17% decline per year

    Finite-size corrections in the SU(2) x SU(2) sector of type IIA string theory on AdS_4 x CP^3

    Get PDF
    We consider finite-size corrections in the SU(2) x SU(2) sector of type IIA string theory on AdS_4 x CP^3, which is the string dual of the recently constructed N=6 superconformal Chern-Simons theory of Aharony, Bergman, Jafferis and Maldacena (ABJM theory). The string states we consider are in the R x S^2 x S^2 subspace of AdS_4 x CP^3 with an angular momentum J on CP^3 being large. We compute the finite-size corrections using two different methods, one is to consider curvature corrections to the Penrose limit giving an expansion in 1/J, the other by considering a low energy expansion in lambda'=lambda/J^2 of the string theory sigma-model, lambda being the 't Hooft coupling of the dual ABJM theory. For both methods there are interesting issues to deal with. In the near-pp-wave method there is a 1/\sqrt{J} interaction term for which we use zeta-function regularization in order to compute the 1/J correction to the energy. For the low energy sigma-model expansion we have to take into account a non-trivial coupling to a non-dynamical transverse direction. We find agreement between the two methods. At order lambda' and lambda'^2, for small lambda', our results are analogous to the ones for the SU(2) sector in type IIB string theory on AdS_5 x S^5. Instead at order lambda'^3 there are interactions between the two two-spheres. We compare our results with the recently proposed all-loop Bethe ansatz of Gromov and Vieira and find agreement.Comment: 21 pages. v2: typos fixed, refs. added. v3: misprints corrected, refs. adde

    How Wind Turbines Alignment to Wind Direction Affects Efficiency? A Case Study through SCADA Data Mining

    Get PDF
    SCADA control systems are the keystone for reliable performance optimization of wind farms. Processing into knowledge the amount of information they spread is a challenging task, involving engineering, physics, statistics and computer science skills. The present work deals with the effects on the efficiency of turbine inability of optimal aligning to the wind direction, due to meandering wind caused by wakes. The approach is tested on a judiciously chosen cluster of turbines of a wind farm sited in southern Italy. By a post-processing method based on discretization of nacelle position measurements, a set of dominant patterns of the cluster is identified. The patterns associated to best performances are individuated and it is shown that they correspond to non-trivial alignment to wind direction

    Individuation of wind turbine systematic yaw error through SCADA data

    Get PDF
    Much attention in the wind energy literature is devoted to condition monitoring [...
    corecore